Neutron Polarization Measurements with a 3He Spin Filter for the NPDGamma Experiment

Matthew Musgrave
University of Tennessee
for the NPDGamma Collaboration

March 31, 2012
APS April Meeting, Atlanta, GA
The observed γ-ray asymmetry measured by the NPDGamma experiment is proportional to the product of the neutron polarization and the physical asymmetry.

\[A_{\gamma}^{\text{observed}} \propto P_n A_{\gamma}^{\text{physical}} \]
Polarimetry Setup

- Beam guide
- SM polarizer
- Guide field
- RFSF
- Detector array
- Guide coils
- Beam monitors
- Collimators
- ^3He cell
- ^3He ion chamber
Polarizing Neutrons – Super Mirror Polarizer

Advantages

- High neutron polarization (>90%)
- High transmission of desired spin state
- Stable polarization

Disadvantages

- Physical mechanism is complicated
- Polarization is not known \textit{a priori}

Performs well as the neutron polarizer for the NPDGamma experiment but the beam polarization will have to be measured with a 3He analyzer.
Analyzing Neutrons – 3He Spin Filter

Advantages

- Polarizes a broad range of neutron energies
- 3He polarization can be reversed
- Physical mechanism is well understood

Disadvantages

- Smaller figure of merit compared to SMP
- Lower transmission
- Lower neutron polarization
A 3He spin filter is used as a neutron analyzer to measure the neutron polarization and the RFSF efficiency.
Neutron Capture on Polarized ^3He

The capture cross section for low energy neutrons on ^3He is large for antiparallel spins and nearly zero for parallel spins.
Neutron Capture on Polarized ^3He

Transmission and polarization of an unpolarized neutron beam through a polarized ^3He cell:

\[
T_{\text{unpol}}(\lambda) = e^{-\frac{n\sigma_0 l}{\lambda_0} \lambda}
\]

\[
T_{\text{pol}}(\lambda) = e^{-\frac{n\sigma_0 l}{\lambda_0} \lambda} \cosh\left(\frac{n\sigma_0 l}{\lambda_0} \lambda P_{\text{He}}\right)
\]

\[
P_n^{\text{He}}(\lambda) = \tanh\left(\frac{n\sigma_0 l}{\lambda_0} \lambda P_{\text{He}}\right)
\]

These equations are derived from the spin dependent exponential attenuation of neutron polarization states through polarized ^3He.

For the NPDGamma experiment the neutron beam is polarized, so the RFSF is used to approximate an unpolarized neutron beam.
The RF Spin Flipper

The RFSF creates an oscillating magnetic field tuned to the Larmor frequency of the neutrons. During passage through the RFSF, neutrons are rotated by 180°.

- T_0: RFSF off
- T_{0}^{afp}: RFSF off, 3He spin flipped
- T_{sf}: RFSF on
- T_{sf}^{afp}: RFSF on, 3He spin flipped

\[
R_0 \equiv \frac{T_{0}^{afp} - T_0}{T_{0}^{afp} + T_0} = P_n \tanh(\kappa \lambda P_{He})
\]

\[
R_{sf} \equiv \frac{T_{sf}^{afp} - T_{sf}}{T_{sf}^{afp} + T_{sf}} = \varepsilon_{sf} P_n \tanh(\kappa \lambda P_{He})
\]

\[
\varepsilon_{sf} = \frac{R_{sf}}{R_0}
\]
RF Spin Flipper Efficiency

The RFSF flips the neutron spin with nearly 99% efficiency and is in close agreement with our model of the RFSF’s performance.
How the Neutron Polarization is Calculated

\[R_{on} = \frac{T_{on}}{T_0} \quad R_{off} = \frac{T_{off}}{T_0} \quad P_n(\lambda) = \frac{R_{off} - R_{on}}{\sqrt{(\varepsilon R_{off} - R_{on})^2 - (1 - \varepsilon)^2}} \]

\(\xi \) = RFSF Efficiency
Determining the Neutron Polarization at Multiple 3He Polarizations

Ideally the neutron polarization can be determined independently of the 3He polarization. A scattered neutron background initially distorted the results and introduced a 3He polarization dependence.
Background Subtraction

Since the neutron polarization is independent of the 3He polarization, the background can be determined from multiple neutron polarization measurements at different 3He polarizations by minimizing the variance between the measurements.
Comparing the Two Methods of Determining the Polarization in the Center of the Beam

Flipping the ^3He spins with the RFSF always off.
Simulation of Neutron Polarization

The neutron polarization was modeled with the Monte Carlo neutron ray-tracing package McStas.

Model correctly predicts the lower polarization at higher neutron wavelengths. The 2% difference can be attributed to variations in super mirror fabrication which produces super mirrors with properties different then how McStas models them.
Conclusion

The RFSF efficiency and the neutron polarization were successfully measured with a 3He spin filter.

The average RFSF efficiency in the center of the beam was measured to be \sim99% with an error less than 1%.

The neutron polarization can be measured to less than a 1% error which meets the requirements of the NPDGamma experiment.

The neutron polarization will be monitored periodically during data production with the H$_2$ Target.