Chiral symmetry and some implications

Matthias R. Schindler

Lunch talk
ORNL
December 13, 2013
Chiral symmetry

Spontaneous symmetry breaking

Implications of chiral symmetry and its breaking
What is chiral symmetry?

Symmetry of Quantum Chromodynamics (QCD)
- $\text{SU}(2)_R \times \text{SU}(2)_L$ (or $\text{SU}(3)_R \times \text{SU}(3)_L$)
- Approximate
- Spontaneously broken
Why is it important?

Symmetries have consequences

- Constraints on spectrum
 - Rotational symmetry in QM \(\Rightarrow \) \((2l + 1)\) degenerate states \(|l, m\rangle\)

- Constraints on interactions
 - Rotational symmetry \(\Rightarrow\) Selection rules for transitions
 - Special relativity \(\Rightarrow\) Maxwell’s equations
 - Gauge invariance \(SU(3) \times SU(2) \times U(1)\) \(\Rightarrow\) Standard Model

Consequences of chiral symmetry

- Multiplets of hadrons
- Pions are very light
- Interactions of pions are small at small energies
- Relations between different low-energy processes
Quantum Chromodynamics

- Theory of strong interactions
- Quarks and gluons
- SU(3) (color) gauge theory
- Lagrangian

\[\mathcal{L}_{\text{QCD}} = \sum_{f=1}^{6} \bar{q}_f (i \slashed{D} - m_f) q_f - \frac{1}{2} \text{Tr} (G_{\mu \nu} G^{\mu \nu}) \]

- Key features
 - Asymptotic freedom
 - Confinement
Light and heavy quarks

- Light quarks: u, d, s:

 \[m_u, m_d, m_s \ll 1 \text{ GeV} \]

- Heavy quarks: c, b, t:

 \[1 \text{ GeV} \ll m_c, m_b, m_t \]

- Masses of observed strongly interacting particles:

 \[M_\rho, M_p, \ldots \sim 1 \text{ GeV} \]

- Exception: π mesons:

 \[m_\pi \sim 140 \text{ MeV} \]
Chiral limit

- At low energies: ignore effects from heavy quarks
- Quark model: proton = uud
- $M_p \gg 2m_u + m_d$
- Approximate $m_u = m_d = 0 \text{ MeV}$

Chiral limit = massless light quarks

$$\mathcal{L}_0 = \sum_{f=u,d} \bar{q}_f i \not{D} q_f - \frac{1}{2} \text{Tr} \left(G_{\mu\nu} G^{\mu\nu} \right)$$
Chiral quark fields

- Left- and right-handed quark fields:

\[q_{f,R} = \frac{1}{2}(1 + \gamma_5)q_f, \quad q_{f,L} = \frac{1}{2}(1 - \gamma_5)q_f \]

- Massless QCD Lagrangian:

\[\mathcal{L}_0 = \sum_f \left(\bar{q}_{f,R} i\slashed{D} q_{f,R} + \bar{q}_{f,L} i\slashed{D} q_{f,L} \right) - \frac{1}{2} \text{Tr} \left(G_{\mu\nu} G^{\mu\nu} \right) \]

- Collect

\[q_R = \begin{pmatrix} q_{u,R} \\ q_{d,R} \end{pmatrix}, \quad q_L = \begin{pmatrix} q_{u,L} \\ q_{d,L} \end{pmatrix} \]
Chiral symmetry

- **Massless QCD Lagrangian**

\[
\mathcal{L}_0 = \left(\bar{q}_R i \mathbf{
ot} \partial q_R + \bar{q}_L i \mathbf{
ot} \partial q_L \right) - \frac{1}{2} \text{Tr} \left(G_{\mu \nu} G^{\mu \nu} \right)
\]

- Invariance under independent global transformation of right- and left-handed quarks

 \[q_R \rightarrow U_R q_R, \quad q_L \rightarrow U_L q_L\]

- \(U_R, U_L\): independent SU(2) matrices

Chiral symmetry:

\[\text{SU}(2)_R \times \text{SU}(2)_L\]
Spontaneous chiral symmetry breaking

- Expect degenerate multiplets of positive and negative parity
- Not observed
- Pions very light compared to all other hadrons

Spontaneous chiral symmetry breaking:

$$SU(2)_R \times SU(2)_L \rightarrow SU(2)_V$$

- $SU(2)_V$: isospin symmetry
Spontaneous symmetry breaking

- Symmetry = invariance under transformation
- Transformation defined by group G (translations, rotation, $SU(2)$, ...)
- Assume Lagrangian (underlying laws) invariant under group G
- Ground state = lowest-energy state
- Two possibilities for ground state: invariant under
 - Full group G (Wigner-Weyl mode)
 - Only subgroup H (Nambu-Goldstone mode)

Spontaneous symmetry breaking

Ground state is not invariant under full symmetry group of Lagrangian
Spontaneous symmetry breaking: Examples

Ferromagnet

- Underlying laws rotationally invariant
- At $T < T_C$: preferred direction \Rightarrow rotational invariance lost

“Mexican hat” potential

- $V = -a|\phi|^2 + b|\phi|^4$: invariant under $\phi \to e^{i\theta} \phi$
- Ground state “picks” direction
Goldstone bosons

Consequence of spontaneous breaking of continuous symmetry

- Lagrangian invariant under G with n_G generators
- Ground state invariant under H with $n_H < n_G$ generators

Goldstone’s theorem

There are $n_G - n_H$ massless Goldstone bosons
Application to QCD

- Lagrangian invariant under $G = \text{SU}(2)_R \times \text{SU}(2)_L$
 $\Rightarrow n_G = 6$
- Ground state (spectrum) invariant under $\text{SU}(2)_V$
 $\Rightarrow n_H = 3$
- $6 - 3 = 3$ massless Goldstone bosons

Pions = Goldstone bosons of spontaneously broken chiral symmetry
Explicit chiral symmetry breaking

- Finite quark masses

\[\mathcal{L}_M = - (\bar{q}_R M q_L + \bar{q}_L M q_R) \]

where \(M = \begin{pmatrix} m & 0 \\ 0 & m \end{pmatrix} \) and \(m_u = m_d = m \)

- No longer invariant under independent \(R \) and \(L \) transformation (\(SU(2)_R \times SU(2)_L \))

- Still invariant under \(SU(2)_V \) (isospin) transformations

- Goldstone bosons acquire mass (pseudo-Goldstone bosons)

\[m \ll M_{\text{hadron}} \Rightarrow \text{perturbation theory in } m \]
Chiral perturbation theory

Effective theory of strong interactions at $E \ll 1$ GeV

- Degrees of freedom: pions, nucleons, ...
- Low-energy scale: pion (quark) masses and momenta
- High-energy scale: $\Lambda_\chi \approx 4\pi F_\pi \approx 1$ GeV
- Expansion in $\frac{m_\pi, q}{\Lambda_\chi}$: power counting

Pion mass and momentum expansion of observables
Implications of chiral symmetry

- Nonlinear realization of chiral symmetry:

\[U(x) = \exp \left(i \frac{\phi(x)}{F} \right) = 1 + i \frac{\phi(x)}{F} - \frac{\phi(x)^2}{2F^2} + \ldots \]

\[\phi = \sum_a \phi a \tau_a = \begin{pmatrix} \pi^0 & \sqrt{2} \pi^+ \\ \sqrt{2} \pi^- & -\pi^0 \end{pmatrix} \]

- Chiral Lagrangian

\[\mathcal{L} = \mathcal{L}(U) \]

Chiral symmetries of QCD

⇒ Relations between different low-energy processes

Weinberg (67, 79); Gasser, Leutwyler (84)
Lowest-order Lagrangian: Gell-Mann, Oakes, Renner relation

- Leading-order Lagrangian

\[\mathcal{L}_2 = \frac{F^2}{4} \text{Tr}[\partial_\mu U \partial^\mu U^\dagger] + \frac{F^2 B^2}{2} \text{Tr}[\mathcal{M}(U + U^\dagger)] \quad (1) \]

\[= \frac{1}{2} \partial_\mu \phi_a \partial^\mu \phi_a + mB \phi_a \phi_a + O(\phi^4) \quad (2) \]

Pion mass at lowest order

\[M^2_\pi = 2Bm \]

- Can show \(B \propto \langle \bar{q}q \rangle \) (scalar quark condensate)
 \(\Rightarrow \) Gell-Mann, Oakes, Renner relation
\(\pi N \) coupling and \(g_A \)

- Lowest-order \(\pi N \) Lagrangian

\[
\mathcal{L}_{\pi N}^{\text{int}} = -\bar{\psi} \frac{g_A}{2} \gamma^\mu \gamma^5 u_\mu \psi
\]

\[
= -\bar{\psi} \left(\frac{g_A}{2F} \gamma^\mu \gamma^5 \partial_\mu \vec{\phi} \cdot \vec{\tau} - g_A \gamma^\mu \gamma^5 \frac{\vec{a}_\mu}{2} \right) \psi + \cdots
\]

- Relates \(\pi N \) (strong) and axial-vector (weak) couplings

Goldberger-Treiman relation

\[
\frac{g_{\pi N}}{M_N} = \frac{g_A}{F}
\]

- Systematically calculate corrections to relations

Gasser, Sainio, Svarc (88); Goldberger, Treiman (58)
Chiral perturbation theory for $A \geq 2$ nucleons

- Expansion of NN potential
- Leading order: contact terms + one-pion exchange

\[\pi N \text{ coupling from } L_{\pi N}^{\text{int}} \]
\[\Rightarrow \text{Relation between NN potential and neutron decay} \]

- Next-to-leading order: contact terms + two-pion exchange
- \ldots

- Relations to πN scattering, \ldots
- Extend to three-nucleon, four-nucleon etc potentials
- Consistent potentials and currents
Chiral expansion of nuclear forces

<table>
<thead>
<tr>
<th></th>
<th>Two-nucleon force</th>
<th>Three-nucleon force</th>
<th>Four-nucleon force</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO (Q⁰)</td>
<td>(\times)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>NLO (Q²)</td>
<td>(\times)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>N²LO (Q³)</td>
<td>(\cdot)</td>
<td>(\times \times \times)</td>
<td>–</td>
</tr>
<tr>
<td>N³LO (Q⁴)</td>
<td>(\times \times \times)</td>
<td>(\Delta \times \Delta \times \Delta \times \Delta)</td>
<td>(\Delta \Delta \Delta \Delta \times \times \times \times)</td>
</tr>
</tbody>
</table>

Similarly for currents

Park et al. (94, 97); Pastore et al. (09, 11)
Applications

- NN scattering
- Deuteron properties
- Quark-mass dependence of NN force
- Three-nucleon forces and observables
- Few-body systems
- Hoyle state in 12C
- ...
Conclusions and outlook

Chiral symmetry

- Approximate, spontaneously broken symmetry of QCD
- Reflected in hadron spectrum
- Pions as (pseudo-) Goldstone bosons
- Constraints on allowed interactions
- Relations between observables