An update on the NPDGamma experiment

David Blyth dblyth@asu.edu

Arizona State University
for the NPDGamma Collaboration

HAW14 Meeting of The American Physical Society
Introduction

NPDG radiative capture asymmetry

Apparatus

Measurements and error

Collaboration

Topics

- Brief overview of the $\bar{n}p \rightarrow d\gamma$ process
- Discussion of experimental apparatus and performance
- Measurements and sources of error
- Discussion of previous hadronic weak interaction results with preliminary error bars for NPDGamma

David Blyth dblyth@asu.edu

Arizona State University for the NPDGamma Collaboration

An update on the NPDGamma experiment
Radiative \(n - p \) capture - PV in the \(\Delta I = 1 \) channel

- Figure shows electric and magnetic dipole transitions
- The \textbf{hadronic weak interaction} produces an admixture of irregular states into states with opposite parity.
- In cold neutron capture, parity violation arises from a P-wave admixture into the \(^3S_1 \) ground state.
- The \(\vec{n}p \rightarrow d\gamma \) asymmetry, \(A_\gamma \), is sensitive to interference between \(\Delta I = 1 \) transitions (\(\pi \), neutral current).

David Blyth dblyth@asu.edu
Arizona State University for the NPDGamma Collaboration

An update on the NPDGamma experiment
The $\bar{n}p \rightarrow d\gamma$ asymmetry (A_γ) in the DDH model

$A_\gamma, PV \approx -0.107h_\pi^{1} - 0.001h_\rho^{1} - 0.004h_\omega^{1}$

$\frac{d\omega}{d\Omega} \propto 1 + A_\gamma, PV \hat{k}_\gamma \cdot \hat{\sigma}_n + A_\gamma, PC \hat{k}_\gamma \cdot (\hat{\sigma}_n \times \hat{k}_n)$
Introduction

NPDG radiative capture asymmetry

Apparatus

Measurements and error

Collaboration

David Blyth
dblyth@asu.edu
Arizona State University for the NPDGamma Collaboration

An update on the NPDGamma experiment
- Polarization and spin-flip efficiency are 95\,(1\,\%) and 98\,(1\,\%) respectively.

- RF spin rotator flips spins in an 8-pulse sequence designed to cancel up to 2nd order gain fluctuations.

David Blyth dblyth@asu.edu
Arizona State University for the NPDGamma Collaboration
An update on the NPDGamma experiment
Introduction

NPDG radiative capture asymmetry

Apparatus

Measurements and error

Collaboration

16-liter LH₂ target surrounded by 3π CsI (Tl) 48-scintillator array

David Blyth dblyth@asu.edu
Arizona State University for the NPDGamma Collaboration

An update on the NPDGamma experiment
Supplemental measurements

35Cl - Test of sensitivity/multiplicative systematics

![Graph showing asymmetry](image)

\[
\chi^2 / \text{ndf} = 28 / 22
\]

Prob = 0.1758

Chlorine measurement consistent with previous results

Beam off asymmetry - Test of additive instrumental systematics

Aluminum alloy 6061 - Significant background signal
Supplemental measurements

35Cl - Test of sensitivity/multiplicative systematics

Beam off asymmetry - Test of additive instrumental systematics

Zero instrumental asymmetry at less than 10^{-9}

Aluminum alloy 6061 - Significant background signal

David Blyth dblyth@asu.edu

Arizona State University for the NPDGamma Collaboration

An update on the NPDGamma experiment
Supplemental measurements

35Cl - Test of sensitivity/multiplicative systematics

Beam off asymmetry - Test of additive instrumental systematics

Aluminum alloy 6061 - Significant background signal

Neutron capture in aluminum makes up $\sim 20\%$ of total gamma signal with LH2 target
LH2 measurements

- 250 beam days of data with LH2 target
 - 850 - 1350 kW beam power (SNS at ORNL reached full potential in at the end of 2013, and continued strong in 2014)
- 60 beam days of background asymmetry data
- Preliminary result of $A_\gamma (\vec{n}p \to d\gamma)$
 - Official statement from Collaboration regarding A_γ: “The preliminary result for the parity-violating asymmetry A_γ is that it is small with a statistical error of about 13 ppb”
 - Corresponds to a constraint on h_π^1 on the natural scale of 10^{-7} for an unambiguous test of the DDH best value
 - Statistical errors dominate uncertainty
- Final result in the works
LH2 Raw Asymmetries

$\times 10^{-6}$

- \cdot ASU analysis
- \square UT analysis
- \triangle IU analysis

Detector Pair

Raw Asymmetry

ASU analysis
UT analysis
IU analysis

David Blyth
dblyth@asu.edu

Arizona State University for the NPDGamma Collaboration

An update on the NPDGamma experiment
Weak couplings

Previous constraints (Haxton and Holstein 2013)
Weak couplings

Preliminary statistical uncertainty (not a result)

David Blyth
dblyth@asu.edu

Arizona State University for the NPDGamma Collaboration
NPDGamma Collaboration

1Arizona State University
2Universidad Nacional Autonoma de Mexico
3University of Virginia
4Oak Ridge National Laboratory
5Thomas Jefferson National Laboratory
6University of Michigan, Ann Arbor
7University of Kentucky
8University of New Hampshire
9Los Alamos National Laboratory
10Indiana University
11University of Tennessee
12University of California at Berkeley
13University of Manitoba, Canada
14High Energy Accelerator Research Organization (KEK), Japan
15Paul Scherrer Institute, Switzerland
16Spallation Neutron Source
17University of California at Davis
18TRIUMF, Canada
19Bhabha Atomic Research Center, India
20Joint Institute of Nuclear Research, Dubna, Russia
21University of Dayton
22Western Kentucky University
23University of Tennessee at Chattanooga
24Jacobs University, Germany
25University of Bayreuth, Germany

This work is supported by DOE and NSF (USA)
NSERC (CANADA)
CONACYT (MEXICO)
BARC (INDIA)